
Study of the Different Types of Coupling Present
in the Software Code

Harjot Singh Virdi, Balraj Singh

Department of Computer Science
Lovely Professional University

Punjab, India, 144806

Abstract- Coupling metrics play an important role in
determining the quality of the software. In this paper we
studied the different types of coupling i.e. Static Coupling and
the Dynamic Coupling. We also studied how these metrics
perform under different environments and we calculated the
mean and the standard deviation for the results produced and
graphically represented them. We also described the basic
difference between both types of coupling in this paper.

Keywords- Coupling, Static Coupling metrics, Dynamic
Coupling metrics

I. INTRODUCTION
Software metrics have become an essential in

measuring the quality of the software projects. Coupling
plays an important role in quantitatively evaluation and
improves internal quality attributes of the software
products. In the object oriented approach it indicates the
dependency of the one class on the other class. The changes
in one class might affect the functioning of the dependent
classes. Coupling can be reduced by promoting
cohesiveness of the class [1]. The cohesion in software
measures how closely related the responsibilities, methods
and data of the class to each other. So the main goal behind
the achieving the good quality software is achieving high
cohesion and low coupling in software systems.

In the modern programming systems the extensive use
of dynamic language features such as polymorphism,
dynamic class loading, dynamic class generation, etc. is
done to make software as a part of integrated development
environment. Loosely coupled components of the system
here facilitate comprehensive activities, testing efforts,
reuse, and maintenance tasks.

Automatically measuring of the coupling and the
cohesion can reduce the measurement effort, subjectivity,
and possible errors. For this many coupling and cohesion
metrics are introduced for the syntactic and the semantic
analysis, examples for this are Lint, Analyst4j,
VizzAnalyser, and Sonar. In this paper we will study
coupling and cohesion relationships from different
frameworks and selecting the metrics that links to
respective relationships and how can be these metrics be
implemented.

This paper is divided into four parts. The first part is the
introduction section which gives an overview of the term
coupling and the software metrics. In the second part we
discussed the related work done by various authors in the
past. The third part describes the approach followed for the
analysis of the software. Finally the fourth part gives the
conclusion and discusses the future work.

II. RELATED WORK
Stevens et al. [1] was first to introduced the concept of

coupling and defined coupling as the measure of the
strength of the association established by a connection form
one module to another. This means that stronger the
coupling between modules, more difficult are they to
understand, change and correct and thus the more complex
the resulting software system.

Eder et al. [2] defined the relationships that contribute
to coupling. These are three in types: interaction coupling,
component coupling and inheritance coupling. The
interaction coupling describes the relationship caused by
message passing and method invocation. The component
coupling refers to the relationship caused by the abstract
data types. The inheritance coupling refers to the
relationship caused by inheritance or if one class is an
ancestor of another class.

Page and Jones [3] defined coupling into eight different
levels according to their effects on the understandability,
maintainability, modifiability and reusability of the coupled
modules.

Offutt et al. [4] extended the eight levels of coupling to
twelve thus providing a finer grained measure of coupling.
They also described algorithms to automatically measure
the coupling level between each pair of units in a program.
The coupling levels are defined between pairs of units A
and B. For each coupling level the parameters are classified
by the way they are used. Uses are classified into
computation uses (C-uses) [5], predicate uses (P-uses) and
indirect uses (I-uses) [4].

A C-use occurs when a variable is used on the right side
of an assignment statement, in an output statement, or a
procedure call. A P-use occurs when a variable is used in a
predicate statement.

An I-use occurs when a variable is used in an
assignment to another variable and the defined variable is
later used in a predicate. The I-use is considered to be in the
predicate rather than in the assignment.

Briand et al. [6] also provided a framework which is
applicable for a high level design measurement. He defines
two types of cohesion, Data-Data Interaction (DD-
interaction) and Data-Method Interaction (DM-
interaction) [7]. DD-interaction gives relationships caused
by interactions between data declaration. Data declarations
consisted of abstract local and global type data, class and
global attributes. DM-interaction gives relationship caused
by interactions between data which are at method level.
Method level attributes are consisted of local attributes,
method return types and method parameters.

Harjot Singh Virdi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4153 - 4156

4153

We studied that measurement of the coupling can be
classified into two different categories:

Static Coupling metrics measure what all may happen
when a set of code will be executed and compute different
aspects of the source code.

Run-time / Dynamic Coupling metrics measure what
exactly happens when a set of code us executed. It
evaluates the source code behaviour and run- time
characteristics as well as complexity.

For the static measures Chidamber and Kemerer [8]
proposed the six metrics for the object - oriented systems
which include two metrics for the measuring coupling,
these are, Coupling between Object (CBO) and Response
for Class (RFC).

Coupling Between Objects (CBO) is defined for a class
as a count of the number of other classes to which it is
coupled. This also includes the coupling due to the
inheritance and relates to the notion method of one use
method or instance variables of other [8].

Response for Class (RFC) is defined the number of
methods in the Response Set (RS). The Response Set (RS)
for the class is the set of methods that can potentially be
executed in the response to a message received by the
object of class [8].

RS=M all i{Ri } (1)

Here Ri is the set of methods called by the method i and

M is the set of all methods in the class [8].
There is very little research in the field of the run-time

coupling measures till date. Here we will describe the two
most widely accepted and used approaches for run-time
measures:

Yacoub et al. [9] proposed a set of dynamic coupling
metrics based design to evaluate the change proneness of
the design. These are used to determine quality of the
system in the early development phase. They are based on
execution scenarios, “the measurements are calculated for
parts of the design model that are activated during the
execution of a specific scenario triggered by an input
stimulus”. He defined two metrics as followed:

Export Object Coupling (EOCx(oi,oj)) for an object oi
with respect to an object oj, is defined as the percentage of
number of messages sent from oi to oj with respect to the
total number of messages exchanged during the execution
of a scenario x [9].

Import Object Coupling (IOCx(oi, oj)) for an object oi
with respect to an object oj ,is the percentage of the number
of messages received by object oi that were sent by object
oj with respect to the total number of messages exchanged
during the execution of a scenario x [9].

Arisholm et al. [10] also defined the metrics for run-
time coupling; these are given the table I

Each dynamic coupling metric name starts with either I
or E, this is to distinguish between import coupling and
export coupling, based on the direction of the method calls.
The third letter C or O distinguishes whether the entity of
measurement is object or class. The remaining letter
distinguishes three types of coupling. The first metric, C,
counts the number of distinct classes that a method in a

given class/object uses or is used by. The second metric, M,
counts the number of distinct methods invoked by each
method in each class/object while the third metric, D,
counts the total number of dynamic messages sent or
received from one class/object to or from other
classes/objects [10].

TABLE 1
Abbreviations for the Dynamic Coupling Metrics for the

Arisholm et al. [10].
Variable Description

IC_CC
Import, Class Level, Number of
Distinct Classes

IC_CM
Import, Class Level, Number of
Distinct Methods

IC_CD
Import, Class Level, Number of
Dynamic Messages

EC_CC
Export, Class Level, Number of
Distinct Classes

EC_CM
Export, Class Level, Number of
Distinct Methods

EC _CD
Export, Class Level, Number of
Dynamic Messages

IC_OC
Import, Object Level, Number of
Distinct Classes

IC_OM
Import, Object Level, Number of
Distinct Methods

IC_OD
Import, Object Level, Number of
Dynamic Messages

EC_OC
Export, Object Level, Number of
Distinct Classes

EC_OM
Export, Object Level, Number of
Distinct Methods

EC _OD

Export, Object Level, Number of
Dynamic Messages

III. APPROACH

The Open Source real world problems such as Velocity
(Apache Jakarta Project) [11], Ant (Apache Ant Project)
[12] and Xalan-Java (Apache XML Project) [13] are used
to study coupling metrics. The source code of all the
problems is publicly available and we compiled all the
codes with javac compiler from Oracle Java SDK 1.7.
Similar study was carried out by the Arisholm et al. [10]
with single program Velocity only. In our experiment we
calculated the mean and the standard variation of the values
for the different coupling metrics which is given in the
figure 1 below, the formula used for the calculation of
mean is below:

 (2)

Where, is the calculated mean for value xi, value of i

ranges from 1,2,3,.......n and n is the number of times the
values measured for the given metrics.

For the calculation the standard variation of the values
the formula we used is as follows:

Harjot Singh Virdi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4153 - 4156

4154

 (3)

Where, σ is the standard deviation and the is the

calculated mean for value xi, value of i ranges from
1,2,3,.......n and n is the number of times the values
measured for the given metrics.

The results obtained demonstrated that the results
obtained by the static coupling measures are not same as
with the run-time coupling measures and also additional
information over and above the static CBO can be
extracted. This holds good with the finding of Arisholm et
al. [10] for the single Velocity program.

TABLE 2

Mean and Standard Deviation Table for Velocity

 MEAN SD
CBO 7.52 8.02

IC_CC 4.27 6.91
IC_CM 8.52 10.74
IC_CD 20.35 33.14
EC_CC 3.79 4.45
EC_CM 7.46 9.25
EC_CD 26.23 28.23

TABLE 3

Mean and Standard Deviation Table for Ant

 MEAN SD
CBO 8.39 7.84

IC_CC 4.01 7.98
IC_CM 7.64 8.56
IC_CD 16.69 17.03
EC_CC 2.35 3.45
EC_CM 7.11 7.67
EC_CD 21.07 20.49

TABLE 4

Mean and Standard Deviation Table for Xalan
 MEAN SD

CBO 9.07 9.82
IC_CC 4.17 4.45
IC_CM 8.60 9.01
IC_CD 35.62 38.09
EC_CC 2.91 3.78
EC_CM 6.48 7.68
EC_CD 42.07 45.23

As standard deviation measures the absolute dispersion,

so we can say that where there is small standard deviation
there exists the high degree of uniformity as well as
homogeneity in observations and for large values of
standard deviation vice versa exists. So these results
obtained directly affect the quality, it means, lower the
deviation higher the software quality.

Fig. 1 Graphical Representation of Results for Different

Real World Programs.

The calculation of the coefficient of variation is
calculated for the value obtained individually for the
metrics for different problems, according to the formula
given below:

Cv= / σ (4)

Where, Cv is the coefficient of Variation. and σ are

the corresponding values of mean and the standard
deviation calculated earlier. The graph was obtained for the
coefficient of variation for Velocity, Ant and Xalan, as
shown in the figure 2

Harjot Singh Virdi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4153 - 4156

4155

Fig. 2. Graphical Representation of the Coeffiecient of
Variation.

We interpreted from the above that when the same set

of coupling measures is applied in the different
environment the results so obtained are different. Further it
can be interpreted from the above graph that the results for
Xalan deviates less as compared with Velocity and Ant
problems, as the graph line for Xalan follows lesser ups and
downs (i.e. its almost straight as the deviation value is less).
Also, we can say that Arisholm et al. [10] findings can be
applicable across variety of programs.

Here are some common differences observed between

the static and the run-time coupling measures:
 Run-time measures are effort intensive i.e. more

complex to perform than static measures.
 The static measures are less expensive as

compared to the run-time measures.
 Static measures don’t reflect the actual situation

when the dynamic binding and polymorphism is
present in the code.

 Static analysis can be performed during
development phases side by side whereas the run-
time analysis can be done only after the project
completion.

IV. CONCLUSION AND FUTURE WORK
This paper presented the results of static and dynamic

coupling measures on the three different real world
problems. We calculated the mean and standard deviation
for obtained values of result. We also discussed how the
value of standard deviation is usefully in judging the
representativeness of the mean and quality of software
system.

In the future, we will replicate our experiment on large
number of software systems and improve the quality of the
system by making the deviation factor low.

ACKNOWLEDGMENT

The author would like to thank the faculty of Department of
Computer Science, Lovely Professional University, Punjab
(India) for their able guidance.

REFERENCES
[1] W.P. Stevens, G.J. Myers, and L. L. Constantine. Structured design.

IBM Systems Journal, 13(2):115-139, 1974.
[2] J. Eder, G. Kappel, and M. Schrefl, "Coupling and cohesion in

object-oriented systems," University of Klagenfurt, Technical report
1994.

[3] M. Page-Jones. The Practical Guide to Structured Systems Design.
Yourdon Press, New York, NY, 1980.

[4] A.J. Offutt, M.J. Harrold, and P. Kolte. A software metrics system
for module coupling. The Journal of Systems and Software,
20(3):295-308, 1993.

[5] D. Gregg, J. Power, and J. Waldron. Platform independent dynamic
Java virtual machine analysis: the Java Grande Forum benchmark
suite. Concurrency and Computation: Practice and Experience,
15(3-5):459-484, March 2003.

[6] L. C. Briand, S. Morasca, and V. R. Basili, "Defining and
Validating Measures for Object-Based High-Level Design," IEEE
Transactions on Software Engineering, vol. 25, pp. 722-743, 1999.

[7] L. C. Briand, J. W. Daly, and J. Wu¨st, "A unified framework for
cohesion measurement in object oriented systems," Empirical
Software Eng.: An Int’l Journal, vol. 3, pp. 65-117, 1998.

[8] S.R. Chidamber and C.F. Kemerer. A metrics suite for object-
oriented design. IEEE Transactions on Software Engineering,
20(6):467-493, June 1994.

[9] S.M. Yacoub, H.H. Ammar, and T. Robinson. Dynamic metrics for
object oriented designs. In Software Metrics Symposium, pages 50-
61, Boca Raton, Florida, USA, Nov 4-6 1999.

[10] E. Arisholm, L.C. Briand, and A. Foyen. Dynamic coupling
measures for object oriented software. IEEE Transactions on
Software Engineering, 30(8):491-506, 2004.

[11] Jakarta. The Apache Jakarta Project. http://jakarta.apache.org/.
[12] The Apache Ant Project. Ant. http://ant.apache.org/.
[13] The Apache XML Project. Xalan. http://xml.apache.org/xalan-j/.

Harjot Singh Virdi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4153 - 4156

4156

